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Overview
Introduction to score-matching 
Noise conditional score networks 
Score-based generation via SDEs 
Diffusion models 

https://yang-song.github.io/blog/2021/score/
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Tractability v. Flexibility

• In generative modelling there are two opposing forces: tractability and flexibility 

• Tractable models are usually analytically computable, thus easy to evaluate and fit 

• But they are usually not flexible enough to learn the true data structure 

• Flexible models can fit arbitrary structures in data 

• But they are usually expensive to evaluate, fit, or sample from
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Overview of generative models

Likelihood-based generative 
models Implicit generative models
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Likelihood-based generative models

• Typically make strong assumptions to ensure tractability of likelihood 

• Specifically of the normalising constant  in  

• For instance, VAEs assume a tractable variational approximation  

• Autoregressive models require causal convolutions 

• Normalizing Flows require invertibility in the network architecture

Z(x) p(x) =
p̃(x)
Z(x)

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Implicit generative models

• Adversarial training for implicit generative models is very unstable 

• Adversarial training leads often to mode collapse and reduced sampling variance 

• Implicit generative models cannot compute likelihood of a sample, they just sample
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Overview of generative models

Likelihood-based generative 
models Implicit generative models

Score-based generative models
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Tractability v. Flexibility

• In generative modelling there are two opposing forces: tractability and flexibility 

• Tractable models are usually analytically computable, thus easy to evaluate and fit 

• But they are usually not flexible enough to learn the true data structure 

• Flexible models can fit arbitrary structures in data 

• But they are usually expensive to evaluate, fit, or sample from 

• Diffusion/score-matching models are both tractable and flexible
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