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Tractability v. Flexibility

In generative modelling there are two opposing forces: tractability and flexibility

Tractable models are usually analytically computable, thus easy to evaluate and fit

But they are usually not flexible enough to learn the true data structure

Flexible models can fit arbitrary structures in data

But they are usually expensive to evaluate, fit, or sample from

E. Gavves
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Overview of generative models

Likelihood-based generative
models

Implicit generative models
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Likelihood-based generative models

Typically make strong assumptions to ensure tractability of likelihood

Specifically of the normalising constant Z(x) in p(x) =

For instance, VAEs assume a tractable variational approximation
Autoregressive models require causal convolutions

Normalizing Flows require invertibility in the network architecture
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Bayesian networks
(e.g., VAESs)
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Autoregressive
models

Data space &
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Z(X)

Latent space Z
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Implicit generative models

* Adversarial training for implicit generative models is very unstable
* Adversarial training leads often to mode collapse and reduced sampling variance

* Implicit generative models cannot compute likelihood of a sample, they just sample

E. Gavves ://uvadl?c.github.io
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Overview of generative models

Likelihood-based generative

Implicit generative models
models P J

Score-based generative models
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Tractability v. Flexibility

In generative modelling there are two opposing forces: tractability and flexibility

Tractable models are usually analytically computable, thus easy to evaluate and fit

But they are usually not flexible enough to learn the true data structure

Flexible models can fit arbitrary structures in data

But they are usually expensive to evaluate, fit, or sample from

Diffusion/score-matching models are both tractable and flexible

E. Gavves
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